МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ДОНБАССКАЯ АГРАРНАЯ АКАДЕМИЯ»

МАТЕМАТИКИ, ФИЗИКИ И ИНФОРМАЦИОННЫХ КАФЕДРА ТЕХНОЛОГИЙ

УТВЕРЖДАЮ: Первый проректор

(ПОДПИСЬ) (ФИО)

(ДУ) (ФИО)

(ДУ) (ФИО)

2023 г.

МП

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

Физика										
	(наименование дисциплины)									
Направление подготовки	35.03.04 Агрономия									
	(код и наименование направления подготовки/специальности)									
Направленность (профиль)	Агробизнес									
	(наименование профиля/специализации подготовки, при наличии)									
Квалификация выпускника:	бакалавр									
	(квалификация выпускника)									
Год начала подготовки: 2023										

Фонд оценочных средств по дисциплине «Физика» является частью ОПОП ВО по направлению подготовки 35.03.04 Агрономия, направленность (профиль) Агробизнес, и предназначен для оценивания уровня сформированности компетенций обучающихся.

Разработчик(и)	lly/	М.А. Дулин
	(подпись)	(ФОИ)
- V A O 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	(подпись)	(ФОИ)
1 Average 1 2023 r	(подпись)	(МОФ)

Фонд оценочных средств обсужден на заседании ПМК кафедры физики, математики и информационных технологий, протокол №5 от 10 апреля 2023 г.

Фонд оценочных средств утвержден на заседании кафедры физики, математики и информационных технологий, протокол №9 от 10 апреля 2023 г..

Заведующий кафедрой

Л. М. Тарасенко

Раздел 1. ПАСПОРТ ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Биофизика»

1.1. Основные сведения о дисциплине

	Укрупненная группа,	Характеристика дисциплины				
Наименование показа- телей	направление подготовки, квалификационный уро- вень	очная форма обучения		ная фор- бучения	очно- заочная форма обучения	
Количество зачетных	Укрупненная группа 35.00.00 Сельское, лесное и рыбное хозяйство	00	бязате	льная част	Ъ	
единиц – 4	Направление подготовки: 35.03.04 Агрономия					
		Семестр				
Общее количество ча-	Направленность (профиль): Агробизнес	2-й		1-й	1-й	
сов — 144	Ат робизнес	Лекции				
		16 ч.		8 ч.	10 ч.	
		Занятия семинарского типа				
	0.5	30 ч.		2 ч.	8 ч.	
	Образовательная програм- ма высшего образования –	Само	стоят	ельная ра	бота	
	программа бакалавриата	95.7 ч.		131.7 ч.	123.7 ч.	
	программа оакылариата	Контактная работа, всего				
		2.3 ч.		2.3 ч.	2.3 ч.	
		Вид контроля: экзамен				

1.2. Перечень компетенций, формируемых дисциплиной

«Биофизика»

Код компетен-	Содержание ком-	Планируемые результаты обучения					
ции	петенции	Код и наименова-	Формируемые знания, умения и				
		ние	навыки				
		индикатора дости-					
		жения компетенции					
1	2	3	4				
ОПК-1	Способен решать	ОПК-1.1 использу-	Знание: основные понятия, фи-				
	типовые задачи	ет основные зако-					
	профессиональной	ны математических	зические явления, основные за-				
	деятельности на	дисциплин для	коны и модели механики, элек-				
	основе знаний ос-	решения типовых	тричества и магнетизма, колеба-				
	новных законов	задач профессио-	тричества и магнетизма, колсоа-				
	математических и	нальной деятель-	ний и волн, квантовой физики,				
	естественных наук	ности	статистической физики и термо-				
	с применением		динамики; границы их примени-				
	информационно						
	коммуникационных		мости, применение законов в				
	технологий		важнейших практических прило-				

жениях; основные физические величины и физические константы, их определение, смысл, способы и единицы их измерения; фундаментальные физические опыты и их роль в развитии науки; назначение и принципы действия важнейших физических приборов.

Умение: использовать основные приемы обработки экспериментальных данных; решать типовые задачи по основным разделам физики; объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий; истолковывать смысл физических величин и понятий; записывать уравнения для физических величин в системе СИ; работать с приборами и оборудованием современной физической лаборатории; использовать методы физического и физико-химического. Навык ладеть методами экспериментального исследования в физике (планирование, постановка и обработка эксперимента); использования основных общефизических законов и принципов в важнейших практических приложениях; применения основных методов физикоматематического анализа для решения естественнонаучных задач; правильной эксплуатации основных приборов и оборудования современной физической лаборатории; использования методов физического моделирования на практике. Опыт деятельности: получить

опыт проведения физических

	измерений и овладеть начальны-
	ми навыками проведения экспе-
	риментальных научных исследо-
	ваний (с использованием современных измерительных приборов
	и научной аппаратуры), а также методами обработки результатов
	измерений; научиться эффектив- ному использованию полученных знаний и навыков и грамотному
	применению их в своей практической деятельности

1.3. Перечень тем дисциплины

III 1		Кол-во часов					
Шифр темы	Название темы	Очная форма	Заочная форма	Очно- заочная форма			
	Раздел 1. Механика, молекулярная физ	ика и термод	цинамика				
T 1.1	Кинематика и динамика поступательного и вращательного движения.	12	12	12			
T 1.2	Законы сохранения в механике	12	12	12			
T 1.3	Механические колебания. Механика жидкостей и газов	12	12	12			
T 1.4	Основы молекулярно- кинетической теории. Термодинамика.	12	12	12			
	Раздел 2. Электромагнитное взаимодействие и волны						
T 2.1	Электростатика и постоянный ток. Электрический ток в средах	16	16	16			
T 2.2	Магнетизм. Электромагнитные колебания, переменный ток	16	16	16			
T 2.3	Волны. Электромагнитные волны. Основы СТО	16	16	16			
	Раздел 3. Оптика, основы квантовой	и атомной ф	ризики				
T 3.1	Геометрическая оптика. Волновая оптика	12	12	12			
T 3.2	Тепловое излучение. Основы квантовой механики	12	12	12			
T 3.3	Основы физики атома. Атомные излучения	12	12	12			
T 3.4	Основы физики атомного ядра. Элементарные частицы	9.7	9.7	9.7			
	Другие виды контактной работы	2.3	2.3	2.3			
Всего		144	144	144			

1.4. Матрица соответствия тем дисциплины и компетенций

Шифр компетенции по ФГОС ВО	Шифр темы										
	T 1.1	T 1.2	T 1.3	T 1.4	T 2.1	T 2.2	T 2.3	T 3.1	T 3.2	T 3.3	T 3.4
ОПК-4.1	+	+	+	+	+	+	+	+	+	+	+

1.5. Соответствие тем дисциплины и контрольно-измерительных материалов

	110. 000	i bororbiro rom An	ТЕКУЩИЙ К							
№ темы	Тестовые задания по теоретическому материалу	Вопросы для устного опроса	Типовые задания практического ха- рактера	Задания для кон- трольной работы	Тематика рефератов, докладов, со- общений	Групповое творче- ское задание				
	Блок	Α	Блок Б							
	Контроль	знаний		Контроль умен	ий, навыков					
Тема 1.1	+	+	+	-	-	+				
Тема 1.2	+	+	+	-	-	+				
Тема 1.3	+	+	+	-	-	+				
Тема 1.4	+	+	+	-	-	+				
Тема 2.1	+	+	+	-	-	+				
Тема 2.2	+	+	+	-	-	+				
Тема 2.3	+	+	+	-	-	+				
Тема 3.1	+	+	+		_	+				
Тема 3.2	+	+	+	-	-	+				
Тема 3.3	+	+	+	-	_	+				
Тема 3.4	+	+	+	-	-	+				

1.6. Описание показателей и критериев оценивания компетенций на различных этапах их формирования

Результат обучения	Критерии и показа-				Результат обучения
по дисциплине	тели оценивания ре-				по дисциплине
	зультатов обучения				
	неудовлетворительно	удовлетворительно	хорошо	отлично	
I этап	Фрагментарные	Неполные знания	Неполные знания	Неполные знания	I этап
Знать основные по-	знания основных	основных понятий,	основных понятий,	основных понятий,	Знать основные по-
нятия, физические	понятий, физиче-	физических явле-	физических явле-	физических явле	нятия, физические
явления, основные	ских явлений, ос-	ний, основных за-	ний, основных за	ний, основных за	явления, основные
законы и модели	новных законов и	конов и моделей	конов и моделей	конов и моделей	законы и модели
механики, электри-	моделей механики,	механики, электри-	механики, электри	механики, электри	механики, электри-
чества и магнетизма,	электричества и	чества и магнетиз-	чества и магнетиз	чества и магнетиз-	чества и магнетизма,
колебаний и волн,	магнетизма, колеба-	ма, колебаний и	ма, колебаний и	ма, колебаний и	колебаний и волн,
квантовой физики,	ний и волн, кванто-	волн, квантовой	волн, квантовой	волн, квантовой	квантовой физики,
статистической фи-	вой физики, стати-	физики, статисти-	физики, статисти-	физики, статисти-	статистической фи-
зики и термодинами-	стической физики и	ческой физики и	ческой физики и	ческой физики и	зики и термодинами-
ки; границы их при	термодинамики;	термодинамики;	термодинамики;	термодинамики;	ки; границы их при
менимости, приме-	границы их приме-	границы их приме-	границы их приме	границы их приме	менимости, приме-
нение законов в важ-	нимости, примене-	нимости, примене-	нимости, примене-	нимости, примене	нение законов в важ-
нейших практиче-	ние законов в важ-	ние законов в важ-	ние законов в важ-	ние законов в важ-	нейших практиче-
ских приложениях.	нейших практиче-	нейших практиче-	нейших практиче-	нейших практиче-	ских приложениях.
(ОПК-1/ОПК-1.1)	ских приложениях. /	ских приложениях.	ских приложениях.	ских приложениях.	(ОПК-1/ОПК-1.1)
	Отсутствие знаний				

ІІ этап Уметь использовать основные приемы обра-ботки экспериментальных данных; решать типовые залачи по основным разделам физики; объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий; истолковывать смысл физических величин и понятий; записывать уравнения для физических величин в системе СИ. (ОПК- $1/O\Pi K-1.1$ III этап

Фрагментарное умение использовать основные приемы обработки экспериментальных данных; решать типовые задачи по основным разделам физики; объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий; истолковывать смысл физических величин и понятий: записывать уравнения для физических величин в системе СИ. / Отсутсствие знаний

В целом успешное, но не систематическое умение исользовать основные приемы обработки экспериментальных данных; решать типовые задачи по основным разделам физики; объяснить основные наблюдаемые природные и техногенные явпозиций фундаментальных физических взаимодействий; истолковывать смысл физических величин и понятий: записывать уравнения для физических величин в системе СИ

В целом успешное, но содержащее отдельные пробелы умение использовать основные приемы обработки экспериментальных данных; решать типовые залачи по основным разделам физики; объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий; истолковывать смысл физических величин и понятий; записывать уравнения для физических величин в системе СИ

Успешное и систе матическое умение использовать основные приемы обработки эксперимен тальных данных; решать типовые задачи по основным разделам физики; объяснить основные наблюдаемые при родные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий; истолковывать смысл физических величин и понятий; записывать уравнения для физических величин в системе СИ.

II этап Уметь использовать основные приемы обра-ботки экспериментальных данных; решать типовые задачи по основным разделам физики; объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий; истолковывать смысл физических величин и понятий; записывать уравнения для физических величин в системе СИ. (ОПК- $1/O\Pi K-1.1$

III этап Владеть навыками экспериментального исследования в физике (планирование, постановка и обра-

Фрагментарное применение навыков экспериментального исследования в физике (планирование, поста-

В целом успешное, но не систематическое применение навыков экспериментального исследования в физике

В целом успешное, но сопровождающееся отдельными ошибками применение навыков экспериментального исследования в физике

Успешное и систематическое применение навыков экспериментального исследования в физике (планирование,

III этап Владеть навыками экспериментального исследования в физике (планирование, постановка и обра-

ботка эксперимента);
использования ос-
новных общефизиче-
ских законов и прин-
ципов в важнейших
практических при-
ложениях; примене-
ния основных мето-
дов физико-
математического
анализа для решения
естественнонаучных
задач
(ОПК-1/ОПК-1.1)

новка и обработка эксперимента); использования основ ных общефизических законов и принципов в важнейших практических приложениях; применения основных методов физианализа для решения естественнонаучных задач. / Отсутствие навыков

(планирование, постановка и обработка эксперимента); использования основных общефизических законов и принципов в важнейших практических приложениях; применения основных методов анализа для решения естественнонаучных задач (планирование, постановка и обработка эксперимента); использования основных общефизических законов и принципов в важнейших практических приложениях; применения основных методов физикоматематического анализа для решения естественнонаучных задач

постановка и обработка эксперимента); использования основных общефизических законов и принципов в важнейших практических приложениях; применения основных методов физико-математического анализа для решения естественнонаучных задач. ботка эксперимента); использования основных общефизических законов и принципов в важнейших практических приложениях; применения основных методов физикоматематического анализа для решения естественнонаучных задач (ОПК-1/ОПК-1.1)

Раздел 2. ОЦЕНОЧНЫЕ СРЕДСТВА

Блок А ЗНАНИЕ – ПОНИМАНИЕ

Фонд тестовых заданий по дисциплине

Тема 1

1) Материальная точка движется по прямой согласно уравнению... Найти скорость, если t = 2c.

$$x = t^4 - 2t^2 + 12$$

- a) 24 m/c
- b) 20 m/c
- c) 26 m/c
- d) 22 m/c
- 2) Что называется нормальным ускорением?
- а) Составляющая полного ускорения, характеризующая изменение вектора скорости по направлению
- b) Быстрота изменения вектора скорости
- с) Составляющая полного ускорения, характеризующая изменение вектора скорости по численному значению
- d) Составляющая вектора скорости, характеризующая изменение скорости по направлению
- 3) Что называется тангенциальным ускорением?
- а) Составляющая полного ускорения, характеризующая изменение вектора скорости по величине
- b) Быстрота изменения вектора скорости
- с) Составляющая полного ускорения, перпендикулярная вектору скорости
- d) Составляющая полного ускорения, характеризующая изменение вектора скорости по направлению
- 4) Как изменится нормальное ускорение точки, если она будет двигаться равномерно по окружности вдвое большего радиуса с той же скоростью.
- а) уменьшится в 2 раза
- b) уменьшится в 4 раза
- с) увеличится в 2 раза
- 5) Как ориентирован вектор тангенциального ускорения?
- а) По касательной к траектории движения в данной точке
- b) Вдоль прямой, проходящей под углом 45 градусов к вектору скорости
- с) По радиусу кривизны траектории к центру кривизны
- d) Перпендикулярно вектору полного ускорения
- 6) Какое из выражений отражает уравнение динамики вращательного движения тела?

a)

$$\vec{M} = \frac{d\vec{L}}{dt}$$

h)

$$\Pi + E_K = const$$

c)

$$F=G\frac{m_1m_2}{r^2}$$

d)

$$E = \frac{mv^2}{2}$$

- 7) Линейная скорость связана с угловой соотношением
- a)
- $v = \omega R$
- b)
- $\varepsilon = \omega^2 R$
- c)
- $S = R\varphi$
- d)
- $a = R\varepsilon$
- 8) Шайба, пущенная по поверхности льда с начальной скоростью 20 м/c, остановилась через 40 с. Коэффициент трения шайбы о лед равен
- a) 0.05
- b) 5
- c) 0,5
- d) 0,1
- 9) Вал вращается с угловой скоростью w=10 рад/с. Определить момент силы, создаваемой валом, если к нему приложена мощность 400Вт.
- a) 40H_M
- b) 40мHм
- c) 2H_M
- d) 10H_M
- 10) Масса тела есть...
- а) мера инертности тела
- b) мера взаимодействия тел
- с) причина ускорения
- d) мера давления на опору

Тема 2

- 1) Единицей измерения работы в системе СИ является
- а) Дж
- b) B_T
- с) Дж/м
- d) кг м
- 2) Указать формулу потенциальной энергии упруго деформированного тела.
- a)

$$E = \frac{kx^2}{2}$$

b)
$$E = mgh$$

$$F = -kx$$

$$F = G \frac{m_1 m_2}{r}$$

3) Какое из выражений отражает закон сохранения механической энергии?

$$\Pi + E_K = const$$

$$M = \frac{dL}{dt} = 0$$

$$F=G\frac{m_1m_2}{r^2}$$

$$E = \frac{mv^2}{2}$$

4) Движущийся шар массой m столкнулся с неподвижным шаром массой 4m. После столкновения шары разлетелись под углом 90 градусов со скоростями 3v (первый) и v (второй). С какой скоростью двигался первый шар до столкновения.

- a) 5v
- b) v
- c) 2v
- d) 13v

5) Мяч массой 200 г, движущийся со скоростью 10 м/c перпендикулярно массивной стенке, отскакивает обратно с той же скоростью. Какой импульс получила стенка (кг м/с).

- a) 4
- b) 50
- c) 2
- d) 3

6) Скорость тела, имеющего массу 4 кг, уменьшилась с 12 м/с до 8 м/с. Как изменилась кинетическая энергия тела (Дж)?

- a) 160
- b) 40
- c) 10
- d) 20

7) Определите работу, совершенную при равномерном скольжении m = 20 кг по снегу при их перемещении на 10 м. Сила трения полозьев о снег составляет 0,02 от веса санок.

- a) 40 H
- b) 2 H

- c) 0,4 H
- d) 4 H
- 8) Мяч массой 200 г, движущийся со скоростью 10 м/c перпендикулярно массивной стенке, отска-кивает обратно со скоростью 5 м/c.Найти продолжительность соударния (c), если срдняя сила удара равна 6 H.
- a) 0.5
- b) 2
- c) 3
- d) 50
- 9) Первое тело массой 2 кг движется со скоростью 6 м/с, второе неподвижно. После столкновения оба тела движутся со скоростью 2 м/с. Найти массу (кг) второго тела.
- a) 4
- b) 9
- c) 2
- d) 1
- 10) Тело массой 3 кг, двигаясь со скоростью 6 м/с сталкивается с другим телом, движущимся в противоположном направлении. После удара оба тела остановились. Найти начальную скорость (м/с) второго тела, если его масса 2кг.
- a) 9
- b) 1
- c) 4
- d) 2

Тема 3

- 1) Течение называется ламинарным, если
- а) слои движущейся жидкости не перемешиваются
- b) слои движущейся жидкости перемешиваются частично
- с) вдоль потока происходит интенсивное вихреобразование
- d) вдоль потока происходит перемешивание жидкости
- 2) Какая из указанных формул определяет силу сопротивления F, действующую со стороны потока жидкости на медленно движущийся в ней шарик?
- a)

$$F = 6\pi \eta V$$

b)

$$F=ma$$

c)

$$F = 3\pi \eta V$$

d)

$$F = m \frac{dV}{dt}$$

- 3) В широкой части горизонтальной трубы скорость воды составляет 20 см/с. Определить ее скорость в узкой части трубы, диаметр которой в 1,5 раза меньше:
- a) 0.45 m/c
- b) 0.30 m/c

- c) 0.60 m/c
- d) 0,40 m/c
- 4) В широкой части горизонтальной трубы нефть течет со скоростью 2м/с. Определить ее скорость в узкой части трубы, если разночть давлений нефти для широкой и узкой части трубы составит 6,65 кПа.

плотность

нефти0,8г/см³

- a) 4.3 m/c
- b) 5.0 m/c
- c) 6.2 m/c
- d) 3.4 m/c
- 5) Амплитуда гармонического колебания А=5см, период Т=4с. Найти максимальную скорость колеблющейся точки
- a)

 $7.85 \cdot 10^{-2} \text{M/c}$

- b) 7.1 m/c
- c) 9_M/c
- d) 11m/c
- 6) Точка совершает гармонические колебания. Максимальная скорость точки V , максимальное ускорение а. Чему равна круговая частота колебаний?

V = 10cM/c

- $a = 40cM/c^2$
- а) 4 рад/с
- b) 0,25 paд/c
- с) 0,5 рад/с
- d) 2 paд/c
- 7) Для грузика массой 100г, жесткостью пружины 10 Н/м круговая частота колебаний пружинного маятника равна...

a)

 $10c^{-1}$

b)

 $100c^{-1}$

c)

 $1c^{-1}$

- d)
- $1.2c^{-1}$
- 8) Как изменится период собственных колебаний пружинного маятника при увеличении массы колеблющегося тела в 4 раза?
- а) Увеличится в 2 раза
- b) Увеличится в 4 раза
- с) Уменьшится в 2раза

- d) Уменшится в 4 раза
- 9) Сохранится ли период колебаний часов ходиков, если их с Земли перевести на Луну?
- а) На Луне часы будут идти медленнее, чем на Земле
- b) На Луне часы будут идти быстрее, чем на Земле
- с) Период колебаний не изменится
- d) На Луне часы идти не будут
- 10) При какой циклической частоте периодически действующей силы будет наблюдаться резонанс в колебаниях, дифференциальное уравнение которых имеет вид ...

$$\ddot{x} + 10^{-5} \dot{x} + 16\pi^2 x = 2 \sin \alpha t$$

a)

$$4\pi c^{-1}$$

b)

$$\pi c^{-1}$$

c)

$$16\pi c^{-1}$$

d)

$$\frac{\pi}{2}c^{-1}$$

Тема 4

- 1. При контакте двух тел с разной температурой теплообмен между ними
- а) невозможен
 - b) возможен только при других дополнительных условий условиях
- с) возможен без всяких дополнительных
- d) среди ответов нет правильного
- 2. При какой температуре молекулы могут покидать поверхность воды?
- а) только при температуре кипения
- b) только при температуре выше 100°C
- с) только при температуре выше 20°C
- d) при любой температуре выше 0°C
- 3. Температура газа равна 250 К. Средняя кинетическая энергия молекул газа при этом равна:

а)
$$-5 \cdot 10^{-22}$$
 Дж

c)
$$5.10^{-23}$$
Дж

4.Когда надутый и завязанный шарик вынесли на улицу морозным днем он уменьшился в размерах. Это можно объяс-

нить:

- а) уменьшились размеры молекул
- b) уменьшилась кинетическая энергия молекул
- с) уменьшилось число молекул
- d) молекулы распались на атомы

5. При разработке нового автомобиля необходимо решать следующую экологическую проблему:

- а) увеличить мощность двигателя
- b) уменьшить токсичность выхлопных газов
- с) улучшить комфортность салона
- d) уменьшить расход топлива

6.Температура первого тела - 5°C, второго 260K, а третьего 20°C. Каков правильный порядок перечисления этих тел по возрастанию температуры?

- a) 1, 2, 3
- b) 3, 2, 1
- c) 2, 1, 3
- d) 1, 3, 2

7. Где число молекул больше: в одном моле водорода или в одном моле воды?

- а) одинаковые
- b) в одном моле водорода
- с) в одном моле воды
- d) данных для ответа недостаточно

8. Кто из ученых впервые экспериментально определил скорость молекул:

- А. Ломоносов
- Б. Больиман
- В. Эйнштейн
- Г. Штерн
- 9. Где больше всего молекул: в одном моле кислорода или в одном моле ртути?
- а) Одинаков
- b) В кислороде больше
- с) В ртути больше
- d) Для ответа недостаточно данных.
- 10. Выразите в Кельвинах температуру 100°С?
- a) 100 K
- b) 0 K
- c) 373 K
- d) 273 K

Тема 5

280) Емкость плоского конденсатора рассчитывается по формуле

$$C = \frac{\varepsilon \varepsilon_0 S}{d}$$

$$C = \frac{Q}{\Delta \varphi}$$

$$C = \frac{\sigma}{\varepsilon \varepsilon_0}$$

$$\varphi = \frac{Q}{4\pi \varepsilon \varepsilon_0 r}$$

Тема 6

- 1) По какой траектории будет двигаться протон, влетевший с постоянной скоростью в однородное магнитное поле под углом к направлению силовых линий:
- а) По винтовой линии.
- b) По эллипсу.
- с) По окружности.
- d) По прямой.
- 2) Длинный прямой магнит вводят в катушку, соединенную с гальванометром. Магнит держат некоторое время неподвижно, потом вынимают. Отклонение стрелки наблюдается когда
- а) когда магнит вводят и выводят из катушки
- b) только когда магнит вводят в катушку
- с) магнит находится внутри катушки
- d) только когда магнит вынимают из катушки
- 3) Сила Лоренца выражается формулой

a)

$$F = Q v B \sin \alpha$$

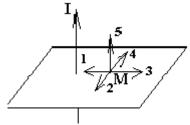
b)

$$\vec{B} = \mu \mu_0 \vec{H}$$

c)

$$F = BIl \sin \alpha$$

d)


$$Fdt=mdv$$

e)

$$F = QBl$$

- 4) Как изменится магнитный поток, проходящий сквозь площадку, расположенную перпендикулярно однородному магнитному полю, если величину площади этой площадки уменьшить в 10 раз, а магнитную индукцию поля увеличить в 2 раза?
- а) Уменьшится в 5 раз
- b) Увеличится в 5 раз
- с) Увеличится в 20 раз

- d) Уменьшится в 20 раз
- 5) На рисунке изображен проводник, по которому идет ток I. Какое направление имеет вектор В индукции магнитного поля в точке ${\rm M}$

- a) 4
- b) 1
- c) 2
- d) 3
- 6) Чему равна магнитная индукция B поля в центре тонкого кольца радиусом R=5 см, по которому проходит ток I=5 A?
- а) 62,8 мкТл
- b) 0 Тл
- с) 50 Тл
- d) 6,8 мкТл
- 7) За 4 сек. магнитный поток, пронизывающий контур, равномерно уменьшается с 10 до 2 Вб. Чему было равно значение эдс индукции в контуре?
- a) 2 B
- b) 5 B
- c) 20 B
- d) 12 B
- 8) При каком значении силы тока в контуре индуктивностью 2 Гн магнитный поток через контур равен 4 Вб?
- a) 2 A
- b) 4 A
- c) 8 A
- d) 1 A
- 9) Определить индукцию магнитного поля, в котором на прямой провод длиной 10 см, расположенный перпендикулярно к линиям индукции, действует сила 2 H, когда по проводнику проходит ток 5 A.
- а) 4 Тл
- b) 100 Тл
- c) 1 Тл
- d) 0,042 Тл
- 10) Какое из выражений дает величину эдс самоиндукции?

a)

$$\varepsilon = -L \frac{dI}{dt}$$

b)

$$\Phi = BS\cos\alpha$$

c)

$$F = IBl\sin\alpha$$
d)
$$W = L^{\frac{1}{2}}$$

Тема 7

- 1) Уравнение незатухающих колебаний дано в виде $x = 4\sin 600\pi t \ (M)$
- . Скорость распространения колебаний в среде равна 1200 м/с. Чему равна длина волны.
- a) 4 M
- b) 2 m
- c) 3 M
- d) 0,5 м
- 2) Вдоль оси х распространяется плоская волна . Чему равно наименьшее расстояние между точками среды, в которых колебания совершаются в противофазе.
- a)
- $\frac{\lambda}{2}$
- b)
- λ
- c)
- $\frac{\cancel{3}}{2}\lambda$
- d)
- 2λ
- 3) Что произойдет с частотой электромагнитных колебаний в колебательном контуре, если в катушку его ввести железный стержень?
- а) Уменьшится
- b) Увеличится
- с) Не изменится
- d) Уменьшится, а затем увеличится
- 4) Что произойдет с частотой электромагнитных колебаний в колебательном контуре, если в катушку его ввести железный стержень?
- а) Уменьшится
- b) Увеличится
- с) Не изменится
- d) Уменьшится, а затем увеличится
- 5) Емкость конденсатора в контуре C = 50 мк Φ , циклическая частота контура 5000 Γ ц. Чему равна индуктивность?
- а) 0,8 мГн
- b) 50 Гн
- с) 5000 Гн
- d) 8 Γ_H
- 6) Электромагнитная волна излучается

- а) зарядом, который движется с ускорением
- b) равномерно движущимся зарядом
- с) покоящимся зарядом
- d) электрическим током

7	Пο	какой из	нижеприведе	енных форм	уп определя	ется скорость	волнового і	понесса?
,	, 110	Kakon no	пижепривед	сппыл форм	ул определи	TION CROPOCID		троцесса.

a)

$$\upsilon = \lambda \nu$$

b)

$$v=at$$

c)

$$\upsilon = \frac{S}{t}$$

d)

$$\psi = \sqrt{2aS}$$

8) Дана круговая частота. Найти частоту и период колебаний.

$$\omega = 628c^{-1}$$

a)

 $100\Gamma y, 0,01c$

b)

 $10\Gamma y$, 0,001c

c)

200Γ*μ*, 0,1*c*

d)

 $1\Gamma u$, 1c

9) Под каким углом к направлению распространения продольной волны совершают колебания частицы среды?

a)

0

b)

 $\frac{\pi}{3}$

c)

 π

4

d)

 $\frac{\pi}{2}$

10) Длина радиоволны 30м. Чему равна частота колебаний источника волны, если скорость распростанения ее в воздухе

$$3 \cdot 10^8 M/c$$
.

a) $10^{7} \Gamma y$ b) $9 \cdot 10^{9} \Gamma y$ c) $10^{-7} \Gamma y$ d) $3 \cdot 10^{9} \Gamma y$

Тема 8

1) Каково фокусное расстояние плоского зеркала?

a)

 $F = \infty$

b)

F = 0

c)

F < 0

d)

 $F \succ 0$

2) Укажите правильную формулировку закона преломления света.

а) Преломленный луч лежит в одной плоскости с падающим лучом и нормалью, восстановленной в точке падения; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных веществ

b) В однородной среде световые лучи распространяются прямолинейно

с) Отраженный луч лежит в одной плоскости с падающим лучом и нормалью, восстановленной в точке падения; угол отражения равен углу падения

d) Свет распространяется по такому пути, оптическая длина которого минимальна

3) При каких условиях наблюдается дифракция?

- а) размеры препятствия соизмеримы с длиной волны
- b) препятствие отсутствует
- с) размеры препятствия гораздо больше длины волны
- d) размеры препятствия гораздо меньше длины волны

4) На дифракционную решетку с периодом d падает свет определенной длины волны. Какой из формул соответствует минимум первого порядка?

a)

$$\sin \varphi = \frac{3\lambda}{2d}$$

b)

$$\sin \varphi = \frac{2d}{3\lambda}$$

c)

$$\sin \varphi = \frac{3d}{\lambda}$$

d)

$$\sin \varphi = \frac{\lambda}{2d}$$

- 5) Какое явление показывает поперечность световых волн?
- а) Явление поляризации
- b) Явление дифракции
- с) Явление дисперсии
- d) Явление интерференции
- 6) Условие минимума для дифракции Фраунгофера на одной щели.

a)

$$a\sin\varphi = \pm m\lambda$$

b)

$$d\sin\varphi = \pm m\lambda$$

c)

$$d\sin\varphi = \pm (2m+1)\frac{\lambda}{2}$$

d)

$$a\sin\varphi = \pm (2m+1)\frac{\lambda}{2}$$

- 7) Какую характеристику неизветсного вещества достаточно определить, чтобы узнать скорость света в нем?
- а) Показатель преломления
- b) Плотность
- с) Упругость
- d) Температуру
- 8) Человек приближается к плоскому зеркалу со скоростью 2 м/с. С какой скоростью он приближается к своему отражению?
- a) 4 m/c
- b) 2 m/c
- c) 1 m/c
- d) 0
- 9) Перераспределение интенсивности, возникающее в результате суперпозиции волн, возбуждаемых когерентными источниками, называется
- а) интерференцией
- b) поляризацией
- с) дисперсией
- d) дифракцией
- 10) Если предмет находится между фокусом и тонкой двояковыпуклой линзой, то изображение получится
- а) мнимое, увеличенное, прямое
- b) увеличенное, обратное, мнимое
- с) мнимое, уменьшенное, прямое
- d) действительное, увеличенное, прямое

Тема 9

1) Интегральная энергетическая светимость... .

$$R_T = \int_0^\infty R_{\nu,T} \cdot dV$$

b)

$$E = mc^2$$

$$\varepsilon = h\nu$$

d)

$$F = ma$$

$$I = I_0 \cdot \cos^2 \varphi$$

2) Длина волны де Бройля равна

$$\lambda = \frac{h}{m \upsilon}$$

$$\lambda = \frac{\mathit{hc}}{\epsilon}$$

c)

$$\lambda = \frac{\mathcal{C}}{\nu}$$

d)
$$\lambda = \frac{4\pi}{k}$$

$$\lambda = \frac{d \sin \varphi}{k}$$

3) Уравнение Шредингера имеет вид

$$-\frac{\hbar^2}{2m}\Delta\psi + \upsilon(x, y, z, t)\psi =$$

$$= i\hbar\frac{\partial\psi}{\partial t}$$

$$\Delta \psi = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2}$$

c)

$$W = \int_{-\infty}^{\infty} |\psi|^2 dV = 1$$
d)
$$W = |\psi|^2 dV$$

$$W = |\psi|^2 dV$$

- 4) Основные законы фотоэффекта.
- а) Безинерционен,
- b) 1-й закон Столетова, красная граница, эффект Комптона1-й закон Столетова, красная граница, частота фотонов не зависит от интенсивности света
- с) Красная граница, эффект Комптона,
- d) Без инерционен, 1-й закон Столетова, смешение Вина2-й закон Столетова
- е) Без инерционен, 1- й закон Столетова, закон Стефана-Больцмана
- 5) Какова зависимость светимости абсолютно черного тела?

Прямопропорциональна -

т4

- b) Прямо пропорциональна T
- с) Не изменяется
- d) Обратно пропорциональна температуре Т
- 6) Виды фотоэффекта.
- а) Внешний, внутренний, вентильный
- b) Внешний, вентильный, тепловой
- с) Внешний, внутренний, тепловой
- d) Вентильный, тепловой, термодинамический
- е) Внешний, внутренний, комбинированный
- 7) Согласно гипотезе де Бройля не только фотон, но и каждый объект обладает ... свойствами.
- а) корпускулярными и волновыми
- b) электрическими
- с) корпускулярными
- d) световыми
- е) волновыми
- 8) Опыты по дифракции микрочастиц свидетельствуют
- а) о наличии у микрочастиц волновых свойств
- b) о кристаллической структуре твердых тел
- с) о малых размерах микрочастиц
- d) размеры атомов кристаллического вещества превышают размеры микрочастиц
- е) о классической механике
- 9) Гипотеза Планка состоит в том, что
- а) электромагнитные волны излучаются в виде отдельных порций (квантов), энергия которых зависит от частоты
- b) Электромагнитные волны поперечны
- с) Нельзя одновременно точно определить значение координаты и импульса
- d) электромагнитные волны излучаются зарядами движущимися с ускорением
- е) скорость света постоянна во всех инерциальных системах отсчета

10) Эффект Комптона (формула)....

a)

$$\Delta \lambda = 2\lambda_c \cdot \sin^2 \frac{\theta}{2}$$

b)

$$E = mc^2$$

c)

$$\varepsilon = h\nu$$

d)

$$p = \frac{W}{c}$$

Тема 10

1) Какая из формул соответствует первому постулату Бора?

a)

$$m_e V r = n\hbar$$

b)

$$\lambda = \frac{\hbar}{p}$$

c)

$$u=v$$

d)

$$h_0 = E_n - E_m$$

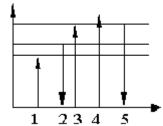
2) Длина волны де Бройля равна

a)

$$\lambda = \frac{h}{m \upsilon}$$

b)

$$\lambda = \frac{hc}{\epsilon}$$


c)

$$\lambda = \frac{c}{v}$$

d)

$$\lambda = \frac{4\pi}{k}$$

3) На чертеже изображены энергетические уровни атома. Какой из указанных переходов электронов между уровнями соответствует испусканию кванта излучения наибольшей частоты?

- a) 5
- b) 2
- c) 3
- d) 4

4) Обобщенная формула Бальмера... .

$$\frac{1}{\lambda} = R^{I} \left(\frac{1}{m^2} - \frac{1}{n^2} \right)$$

b)

$$\lambda = \frac{h}{p}$$

c)

$$m_e V_r = n\hbar$$

d)

$$r_{\lambda,T} = \frac{2\pi h \, v^3}{c^2} \cdot \frac{1}{e \cdot \frac{h \, v}{kT} - 1}$$

- 5) В опытах Дэвиссона и Джермера были обнаружены:
- а) Дифракция электронов;
- b) Поляризация рентгеновских лучей;
- с) Эффект Комптона;
- d) Корпускулярные свойства света;

6) Энергия водородоподобного иона в состоянии с главным квантовым числом.

a)

$$W_n = \frac{Z^2 Rh}{n^2}$$

b)

$$W_n = \frac{ZRh}{n^3}$$

c)

$$E = h\nu$$

d)

$$E = \varepsilon ZV$$

7) Давление света выражается формулой

a)

 $\frac{W}{c}$ b) mc^{2} c) hvd)

mg

8) Какие волны видимой части спектра наиболее длинные?

а) красные

b) фиолетовые

с) синие

d) желтые

9) Какая из формул соответствует второму постулату Бора?

a)

$$h\nu = E_n - E_m$$

b)

$$\nu = \frac{\varepsilon}{h}$$

c)

$$u=v$$

d)

$$\lambda = \frac{2\pi \hbar}{p}$$

10) Определить энергию фотона, испускаемого при переходе электрона с третьего энергетического уровня на основной.

a) 12,1 3B

b) 21,1 ₉B

c) 3,2 9B

d) 1,8 3B

Тема 11

1) Системы из каких квантовых частиц описываются функцией распределения Ферми-Дирака.

а) Системы из частиц с полуцелым спином

b) Системы из частиц с целым спином

с) Системы из частиц с нулевым спином

d) Системы из частиц, практически не взаимодействующих между собой

2) Энергия фотона... .

a)

$$\varepsilon = h\nu$$

b)

$$E = mc^2$$

c)

$$p = \frac{W}{c}$$

d)

$$\lambda_{\text{max}} = \frac{b}{T}$$

- 3) Какая из формулировок соответствует принципу Паули.
- а) В квантово -механической системе не может быть двух или более электронов, находящихся в состоянии с одинаковым набором квантовых чисел
- b) Энергетический спектр электронов в квантово-механической системе дискретен
- с) В квантово-механической системе не может быть двух или более электронов, обладающих одинаковым спином
- d) Состояние микрочастицы в квантовой механике задается волновой функцией ...

Ψ

4) Длина волны де Бройля определяется формулой...

a)

$$\lambda = \frac{h}{m \nu}$$

b)

$$\lambda = cT$$

c)

$$\lambda = 2\pi c/\omega$$

d)

$$\lambda = d \sin \varphi$$

- 5) Какие частицы обладают волновыми свойствами?
- а) Любые частицы
- b) Только заряженные частицы
- с) Электрически нейтральные частицы
- d) Частицы, движущиеся с большими скоростями
- 6) Какая частица образуется в результате ядерной реакции ...

$$^{7}_{3}Li+^{1}_{1}H\rightarrow^{7}_{4}Be+x$$

- а) Нейтрон
- b) Протон
- с) ... частица

 α

2

- d) Электрон
- 7) Что называется массовым числом ядра?
- а) Количество нуклонов в ядре
- b) Количество электронов
- с) Количество протонов в ядре

d) Количество нейтронов в ядре

```
8) Что называется цепной реакцией?
```

- а) Реакция, в которой частицы, вызывающие ее образуются как продукты этой реакции
- b) Реакция синтеза ядер
- с) Реакция объединения атомов в молекулы.
- d) Термоядерныя реакция, в которой получаются изотопы ядер данного вещества

```
9) Постоянная распада радиоактивного изотопа равна 0.1 \cdot 10^{-3} c^1. Чему равен его период полурас-
пада?
a)
\approx 6.9 \cdot 10^3 c
b)
\approx 0.14 \cdot 10^{-3} c
c)
10^{4}c
d) 6,93 c
10) Атомы какого из указанных элементов содержат наименьшее количество электронов?
 ^{36}_{17}Cl
b)
 ^{115}_{49}ln
c)
 ^{108}_{47}Ag
d)
```

Критерии оценки (в баллах):

Максимальная оценка 100 баллов. За каждый правильный ответ студент получает 10 баллов.

- 100 баллов выставляется студенту, если он верно ответит на 10 тестов;
- 90 баллов выставляется студенту, если он верно ответит на 9 тестов;
- 80 баллов выставляется студенту, если он верно ответит на 8 тестов;
- 70 баллов выставляется студенту, если он верно ответит на 7 тестов;
- 60 баллов выставляется студенту, если он верно ответит на 6 тестов;
- 50 баллов выставляется студенту, если он верно ответит на 5 тестов;
- 40 баллов выставляется студенту, если он верно ответит на 4 теста;
- 30 баллов выставляется студенту, если он верно ответит на 3 теста;
- 20 баллов выставляется студенту, если он верно ответит на 2 теста;
- 10 баллов выставляется студенту, если он верно ответит на 1 тест;
- 0 баллов выставляется студенту, если он не верно ответит на все 10 тестов

Вопросы для устного собеседования

Тема 1

- 1. Материальная точка, система отчета, виды механического движения, пространство и время.
- 2. Скорость и ускорение.
- 3. Кинематика вращательного движения.
- 4. Связь между линейными и угловыми величинами.
- 5. Законы Ньютона.

Тема 2

- 1. Силы внутренние и внешние.
- 2. Закон сохранения импульса.
- 3. Закон сохранения момента импульса.
- 4. Закон сохранения полной механической энергии.

Тема 3

- 1. Механические колебания. Уравнения гармонических колебаний.
- 2. Пружинный, математический и физический маятники.
- 3. Затухающие колебания. Вынужденные колебания. Резонанс.
- 4. Гидростатическое и гидродинамическое давление. Закон Паскаля.
- 5. Уравнение неразрывности струи. Уравнение Бернулли.
- 6. Закон Пуазейля. Уравнение Ньютона.

Тема 4

- 1. Основные положения МКТ. Модели газа.
- 2. Основное уравнение молекулярно кинетической теории.
- 3. Изопроцессы в газах. Закон Дальтона.
- 4. І начало термодинамики. Адиабатический процесс.
- 5. ІІ начало термодинамики. Тепловые машины. Цикл Карно

Тема 5

- 1. Электрический заряд. Свойства заряда. Закон Кулона.
- 2. Электростатическое поле. Напряженность электростатического поля.
- 3. Потенциал электростатического поля. Принцип суперпозиции потенциалов. 4. Конденсаторы. Соединение конденсаторов.
- 5. Электрический ток. Сила тока. Плотность тока. Законы Ома. Закон Джоуля-Ленца.
- 6. Электрический ток в жидкостях. Закон Фарадея. Электрический ток в газах.

Тема 6

- 1 Магнитное поле. Магнитная индукция. Закон Био-Савара-Лапласа.
- 2. Закон Ампера. Сила Лоренца. Магнитные свойства веществ.
- 3. Магнитный поток. ЭДС индукции. Закон Фарадея. Правило Ленца.
- 4. Самоиндукция. Индуктивность. Энергия магнитного поля.
- 5. Электромагнитные колебания. Период собственных колебаний контура.
- 6. Переменный ток. Мощность в цепи переменного тока.

Тема 7

- 1. Волны. Длина волны. Уравнение бегущей волны. Звук.
- 2. Электромагнитные волны. Свойства электромагнитных волн. Шкала электромагнитных волн. Скорость света и закон сложения скоростей.
- 3. Основные постулаты СТО. Относительность одновременности и длины. Релятивистские преобразования координат. Релятивистский закон сложения скоростей. Соотношение между релятивистской и ньютоновской механикой.

Тема 8

- 1. Законы геометрической оптики. Отражение и преломление света. отражение. 2. Линза. Формула тонкой линзы. Монохроматичность. Интерференция света. 3. Когерентность. Применение интерференции. Дифракция света.
- 4. Поляризация света. Закон Малюса.
- 5. Дисперсия света. Спектры.

Тема 9

- 1. Тепловое излучение. Законы излучения абсолютно черного тела.
- 2. Формула Планка для теплового излучения.
- 3. Фотоэффект. Уравнение Эйнштейна для фотоэффекта.
- 4. Волновые свойства частиц. Длина волны электрона. Дифракция электронов. 5. Физический смысл волн де-Бройля. Понятие о волновой функции.
- 6. Соотношение неопределенностей Гейзенберга.

Тема 10

- 1. Ядерная модель атома Резерфорда. Линейчатый спектр атома водорода.
- 2. Постулаты Бора. Квантование энергии.
- 3. Периодическая система элементов Менделеева.
- 4. Спонтанное излучение и поглощение света. Люминесценция.
- 5. Понятие об индуцированном излучении. Оптические квантовые генераторы. 6. Лазерное излучение и его свойства.

Тема 11

- 1. Заряд и масса атомных ядер. Спин и магнитный момент ядра. Состав ядра.
- 2. Энергия связи ядра. Ядерные силы. Радиоактивное излучение и его виды.
- 3. Основной закон радиоактивного распада. Активность и ее измерение.
- 4. Классификация элементарных частиц. Мюоны и их свойства. Мезоны.
- 5. Классификация взаимодействий в ядерной физике.
- 6. Современная физическая картина мира.

Критерии оценки (в баллах):

- 90-100 баллов выставляется студенту, если ответ был полным с незначительным количеством неточностей;
- -80-89 баллов выставляется студенту, если в целом ответ был верным с незначительным количеством ошибок (до 10%);
- 75-79 баллов выставляется студенту, если в целом ответ был верным с незначительным количеством ошибок (до 15%);
- 70-74 баллов выставляется студенту, если ответ был со значительным количеством недостатков;
- 60-69 баллов выставляется студенту, если ответ соответствует минимальным критериям;
- 35-59 баллов выставляется студенту, если ответ не вполне соответствует минимальным критериям;
- 0-34 баллов выставляется студенту, если ответ не был дан или не соответствует даже минимальным критериям.

Блок Б ПРИМЕНЕНИЕ

Типовые задания для практических занятий

Тема 1

Задача 1.1 Первую половину пути автомобиль двигался со скоростью 54 км/ч, а вторую половину пути со скоростью 72 км/ч. Найти среднюю скорость автомобиля. Ответ дать во внесистемных единицах и в СИ.

Задача 1.2 Под действием переменной силы F тело переместилось вдоль прямой на расстояние 20 м. Во время движения проекция F силы на направление перемещения изменялась равномерно от 0 до 20 H. Найти работу переменной силы F.

Тема 2

Задача 2.1 Охотник стреляет из ружья вдоль лодки под углом в 300 к горизонту. Какую скорость имел при вылете заряд массой 50 г, если лодка приобрела скорость 10 см/с. Масса лодки и охотника со снаряжением 180 кг.

Задача 2.2 Обруч массой 2 кг катится без скольжения по горизонтальной плоскости. Скорость его центра инерции 2 м/с. На какую высоту он подни мется по наклонной плоскости?

Тема 3

Задача 3.1 Медный шарик, подвешенный на конце пружины, колеблется в вертикальном направлении. Как изменится частота его колебаний, если вместо медного шарика подвесить алюминиевый такого же диаметра?

Задача 3.2 Начальная амплитуда (Ao = 3 см) затухающего колебания материальной точки за 4 мин уменьшиась до 1,2 см. Через какой промежуток времени она будет равна 0,8 см?

Тема 4

 $\it 3adaчa~4.1~$ Молекулы газа летят с одинаковой скоростью $400~{\rm m/c}~$ перпендикулярно к стенке. Концентрация молекул $10^{20}~{\rm m}^{-3}$. Определить давление потока молекул на стенку, если удар молекул о стенку абсолютно упругий. Газ неон. Вывести расчетную формулу и сделать расчет.

Задача 4.2 Водород в объеме $V_1 = 5 \, \pi$, находившийся под давлением $P = 1 \, \text{атм}$, адиабатически сжат до объема $V_2 = 1 \, \pi$. Найти работу сжатия.

Тема 5

Задача 5.1 По проводнику сопротивлением 3 Ом течет равномерно возрастающий ток. Количество теплоты, выделившееся в проводнике за 1 мин, равно 2000 Дж. Определить заряд, прошедший через проводник за это время, если в момент времени, принятый за начальный, ток в проводнике был равен нулю.

Задача 5.2 В проводнике сопротивлением 2 Ом , подключенном к элементу с ЭДС 1,1 В, идет ток 0,5 А. Какова сила тока при коротком замыкании элемента?

Тема 6

Задача 6.1 Какая мощность необходима для того, чтобы проводник длиной 40 см перемещать со скоростью 5 м/с перпендикулярно магнитному полю напряженностью 100 А/м, если по проводнику идет ток 20 А.

Задача 6.2 В цепь переменного тока напряжением 220 В и частотой 50 Гц включены последовательно емкость 35,4 мкФ, активное сопротивление100 Ом и индуктивность 0,7 Гн. Найти силу тока и мощность в цепи, падение напряжения на емкости, омическом сопротивлении и индуктивности.

Тема 7

Задача 7.1 Колебательный контур, состоящий из воздушного конденсатора с двумя пластинами площадью $S=100~{\rm cm}^2$ каждая и катушки с индуктивностью $L=1~{\rm mk}\Gamma$ н, резонирует на волну длиной $\lambda=10~{\rm m}$. Определить расстояние d между пластинами конденсатора.

Задача 7.2 Индуктивность L колебательного контура равна 0,5 мГн. Какова должна быть электроемкость C контура, чтобы он резонировал на длину волны λ =300 м?

Тема 8

Задача 8.1 Предмет находится на расстоянии 20 см от собирающей линзы с фокусным расстоянием 15 см. Найдите расстояние от изображения до линзы.

Задача 8.2 Луч света падает на плоскую границу раздела двух сред, частично отражается и частично преломляется. Определите угол падения, при котором отраженный луч перпендикулярен преломленному лучу.

Тема 9

Задача 9.1 Длина волны, соответствующая максимуму энергии излучения в спектре абсолютно черного тела, равна 500 нм. Излучающая поверхность равна 5 см². Определить мощность излучения.

Задача 9.2 Мощность Р излучения шара радиусом R=10 см при некоторой постоянной температуре T равна 1 кВт. Найти эту температуру, считая шар серым телом с коэффициентом теплового излучения $\epsilon=0.25$.

Тема 10

Задача 10.1 Бор представляет собой смесь двух изотопов с относительными атомными массами A_{r1} =10,013 и A_{r2} =11,009. Определить массовые доли ω_1 и ω_2 первого и второго изотопов в естественном боре. Относительная атомная масса A_r бора равна 10,811.

 3 адача 10.2 Укажите, сколько нуклонов, протонов, нейтронов содержат следующие ядра: 1) $^{3}_{2}$ He; 2) $^{10}_{5}$ B; 3) $^{23}_{11}$ Na; 4) $^{54}_{26}$ Fe; 5) $^{104}_{47}$ Ag; 6) $^{238}_{92}$ U.

Тема 11

Задача 11.1 В ядре изотопа углерода ${}^{14}_{6}$ С один из нейтронов превратился в протон (β --распад). Какое ядро получилось в результате такого превращения?

 $3a\partial a ua$ 11.2 Ядро азота $^{14}_{7}$ N захватило α -частицу и испустило протон. Определить массовое число A и зарядовое число Z образовавшегося в результате этого процесса ядра. Указать, какому элементу это ядро соответствует.

Критерии оценки (в баллах):

- 90-100 баллов выставляется студенту, если составлен правильный алгоритм решения задачи; в логическом рассуждении, в выборе формул и решении нет ошибок; получен верный ответ; задача решена рациональным способом;
- 75-89 баллов выставляется студенту, если составлен правильный алгоритм решения задачи; в логическом рассуждении и решении нет существенных ошибок; правильно сделан выбор формул для решения; есть объяснение решения, но задача решена нерациональным способом или допущено не более двух несущественных ошибок, получен верный ответ;
- 60-74 баллов выставляется студенту, если задание понято правильно; в логическом рассуждении нет существенных ошибок, но допущены существенные ошибки в выборе формул или в математических расчетах; задача решена не полностью или в общем виде;
- 0-59 баллов выставляется студенту, если задача не решена или решена неправильно.

Блок Б ПРИМЕНЕНИЕ

Индивидуальные работы для домашнего выполнения Перечень тем индивидуальных заданий студентов (теоретическая часть)

- 1. Скорость и ускорение.
- 2. Кинематика вращательного движения.
- 3. Связь между линейными и угловыми величинами.
- 4. Законы Ньютона.
- 5. Закон охранения импульса.
- 6. Закон сохранения полной механической энергии.
- 7. Механические колебания.
- 8. Пружинный, математический и физический маятники.
- 9. Гидростатическое и гидродинамическое давление.
- 10. Уравнение Бернулли.
- 11. Основные положения МКТ.
- 12. Основное уравнение молекулярно кинетической теории.
- 13. Основы термодинамики..
- 14. І начало термодинамики. 4. ІІ начало термодинамики.
- 15. Закон Кулона.
- 16. Электростатическое поле.
- 17. Закон Ома.
- 18. Закон Джоуля-Ленца.
- 19. Магнитное поле.
- 20. Закон Фарадея.
- 21. Электромагнитные колебания.
- 22. Переменный ток.
- 23. Волны
- 24. Электромагнитные волны.
- 25. Основные постулаты СТО.
- 26. Законы геометрической оптики.
- 27. Линза. Формула тонкой линзы
- 28 Дифракция света.
- 29. Поляризация света.

- 30. Дисперсия света.
- 31. Тепловое излучение.
- 32. Фотоэффект
- 33. Постулаты Бора
- 34. Периодическая система элементов Менделеева.
- 35. Оптические квантовые генераторы. .
- 36. Радиоактивное излучение и его виды.
- 37. Классификация элементарных частиц.
- 38. Классификация взаимодействий в ядерной физике.
- 39. Современная физическая картина мира.

Практическая часть индивидуального задания

Задачи для контрольной работы

- 1. Два тела движутся вдоль одной прямой так, что их уравнения имеют вид: x_1 = 40 + 10t, x_2 = $12 + 2t^2$
- а) определите вид движения; б) каковы будут координаты этих тел через 5 секунд; в) через какое время и где одно тело догонит второе.
- 2. При аварийном торможении автомобиль, движущийся со скоростью 72 км/ч остановился через 4 с. Найдите тормозной путь.
- 3. Тело движется равномерно со скоростью 3 м/с в течение 5с, после чего получает ускорение 20 м/с 2 . Какую скорость будет иметь тело через 15 с от начала движения. Какой путь оно пройдет за все время движения?
- 4. Скорость автомобиля меняется по закону v = 10 + 0.5t. Найдите результирующую силу, действующую на него, если масса автомобиля 1.5 т.
- 5. Тело свободно падает с высоты 20 м над землей. Какова скорость тела в момент удара о землю? На какой высоте его скорость вдвое меньше?
- 6. Два тела движутся вдоль одной прямой так, что их уравнения имеют вид: x_1 =-40 + 4t, x_2 = 560 $20t^2$
- А) определите вид движения; Б) каковы будут координаты этих тел через 5 секунд; в) через какое время и где одно тело догонит второе.

- 7. Автомобиль, двигаясь с ускорением 2 м/c^2 , за 5 с прошел 125 м. Найдите начальную скорость автомобиля.
- 8. Начиная равноускоренное движение, тело проходит за первые 4 с путь 24м. Определите начальную скорость тела, если за следующие 4 с оно прошло 64 м.
- 9. Скорость материальной точки изменяется по закону v = 5 3t под действием силы 6 H. Какова масса точки?
- 10. Тело падает с высоты 57,5 м. Сколько времени падает тело и какова его скорость при ударе о землю?
- 11. Баллон содержит кислород объемом 50 л, температура которого равна 27 0 С, давление равно $2 \cdot 10^{6}$ Па. Найдите массу кислорода.
- 12. Каково давление газа, если в его объеме, равном 1 см 3 , содержится 10^6 молекул, а температура газа равна $87~^0\mathrm{C}$?
- 13. При давлении $1,5\cdot10^5$ Па в 1 м³ газа содержится $2\cdot10^{25}$ молекул. Какова средняя кинетическая энергия поступательного движения этих молекул?
- 14..При давлении 10^5 Па и температуре 27^0 С плотность некоторого газа 0,162 кг/м 3 . Определите, какой это газ.
- 15..При какой температуре молекулы кислорода имеют среднюю квадратичную скорость 700 м/c? 16.Рассчитайте давление газа в сосуде вместимостью 500 см^3 , содержащем 0,89 г водорода при температуре 17^0C .
- 17. Какова температура газа при давлении 100 к
Па и концентрации молекул $10^{25}~{\rm M}^{-3}$?
- 18. При какой температуре находится газ, количество вещества которого равно 2,5 моль, занимающего объем 1,66 л и находящегося под давлением 2,5 МПа?
- 19. Определите плотность азота при температуре 27°C и давлении 100 кПа.
- 20.При давлении 250 кПа газ массой 8 кг занимает объем 15 м³. Чему равна средняя квадратичная скорость движения молекул газа?
- 21. При передаче количества теплоты $2*10^4$ Дж двигатель совершил работу, равную $5*10^4$ Дж Рассчитать изменение внутренней энергии газа.
- 2 2. Для изобарного нагревания 800 молей газа на 500 К газу сообщили количество теплоты 9,4 МДж. Определите работу газа и изменение его внутренней энергии.
- $2\ 3$. Температура нагревателя $150^{0}\ \mathrm{C}$, а холодильника $20^{0}\ \mathrm{C}$. От нагревателя взято $10^{5}\ \mathrm{кДж}$ теплоты. Как велика работа, произведенная машиной, если машина идеальная.
- 24. Можно ли в медной кастрюле расплавить стальную деталь, если температура плавления меди 1083^0 C, а стали 1400^0 C?
- 25. Назвать основные направления борьбы с отрицательными последствиями использования тепловых двигателей?

- 26. При изотермическом процессе газу передано количество теплоты $2*10^8$ Дж. Чему равно изменение внутренней энергии? Рассчитать работу, совершенную газом.
- 27. Для изобарного нагревания 160 г. кислорода на 50 К газу передано количество теплоты равное 5* 10^4 Дж. Определите работу газа и внутреннюю энергию.
- 28. Температура нагревателя 300^{0} C, а холодильника 30^{0} C. От нагревателя взято 40 кДж теплоты. Как велика работа, произведенная машиной, если машина идеальная.
- 29. Почему не получают ожога, если кратковременно касаются горячего утюга мокрым пальцем?
- 30. Назвать основные недостатки использования тепловых двигателей?
- 31...Какую работу совершает электрическое поле при перемещении заряда 4,6 мкКл между точками с разностью потенциалов 260 кВ?
- 32...Площадь пластин плоского воздушного конденсатора $1,0\cdot 10^{-2} \text{м}^2$, расстояние между ними
- $5,0\cdot10^{-3}$ м. До какого напряжения был заряжен конденсатор, если он обладал энергией $4,2\cdot10^{-3}$ Дж?
- 33. Напряжение между обкладками конденсатора уменьшилось на 100 В. Как, при этом, изменилась его емкость? Ответ обосновать.
- 34. Во сколько раз изменилась напряженность поля точечного заряда при увеличении в 3 раза расстояния до заряда? 35. Два маленьких шарика с одинаковыми зарядами находящиеся в воде на расстоянии 10 см друг от друга, отталкиваются с силой 4 мкН. Найдите модуль заряда каждого из шариков.
- 36.3аряд одной из пластин конденсатора равен $2,0\cdot10^{-3}$ Кл. Разность потенциалов на его обкладках 400 В. Определите ёмкость конденсатора?
- 37.Определите скорость, которую приобрёл электрон, пролетев в электрическом поле между точками с разностью потенциалов 200 В? Заряд электрона равен е =-1,6 \cdot 10⁻¹⁹ Кл, масса электрона 9.1 \cdot 10⁻³¹ кг.
- 38. Напряжение между обкладками конденсатора увеличилось на 100 В. Как, при этом, изменился его заряд? Ответ обосновать.
- 39.Между двумя горизонтально расположенными заряженными пластинами удерживается в равновесии пылинка массой $10^{-12}\,\mathrm{kr}$ и зарядом $5\cdot 10^{-16}\,\mathrm{Kn}$. Определите напряжение между пластинами, если расстояние между ними равно $1\,\mathrm{cm}$.
- 40.На каком расстоянии от точечного заряда 10 нКл в машинном масле напряженность поля равна 10 кН/Кл?
- 41. Провод длиной 3 км и сечением 10 мм² имеет сопротивление 8,4 Ома. Определить удельное сопротивление материала провода.
- 42.В цепь гальванического элемента с ЭДС 1,5 В включена нагрузка с сопротивлением 14 Ом. Определить внутрение сопротивление элемента, если ток в цепи 0,1 А.
- 43. Резисторы R1= 10 Ом, R2= 20 Ом, R3=50 Ом соединены последовательно. К цепи подведено

- напряжение 60 В. Определите падения напряжения U1,U2,U3 на участках цепи и общее сопротивление цепи.
- 44.Определите мощность паяльника, включенного в сеть с напряжением 220 в, если сопротивление спирали паяльника 0,44 кОм.
- 45. Электроплитка мощностью 600 Вт ежедневно работает по 2,5 часа. Определить расход энергии за март месяц.
- 46.Медный провод сечением 10 мм^2 имеет сопротивление 10,5 Ом. Чему равна длина провода? (Удельное сопротивление меди $0,0175 \text{ Ом*мм}^2/\text{м}$)
- 47. Кислотный аккумулятор имеет ЭДС 2,2 В и внутреннее сопротивление 0,2 Ом. Определить сопротивление нагрузки, если амперметр показывает ток 0, 1 А.
- 48. Два резистора R1= 10 Ом, R2= 20 Ом соединены параллельно. К цепи подведено напряжение 3 В. Определите токи в ветвях, общий ток в цепи и общее сопротивление цепи.
- 49.Сопротивление спирали плитки 0,05 кОм. Какую мощность потребляет плитка, если ток в цепи 3 А?
- 50. Электроутюг мощностью 400 Вт ежедневно работает по 40 минут. Определить расход энергии за апрель месяц.
- 51. Длина активной части проводника 15 см. Угол между направлением тока и индукцией магнитного поля равен 900. С какой силой магнитное поле с индукцией 40 мТл действует на проводник, если сила тока в нем 12 А?
- 52. На протон, движущийся со скоростью 107 м/с в однородном магнитном поле перпендикулярно линиям индукции, действует сила $0.32 \cdot 10^{-12}$ H. Какова индукция магнитного поля?
- 53. Определите индуктивность катушки, которую при силе тока 8,6 А пронизывает магнитный поток 120мВб.
- 54.Определите по условию задачи №2 радиус окружности, по которой движется протон, период обращения, импульс электрона, его кинетическую энергию, а также ускоряющую разность потенциалов, которую прошел протон, прежде чем попал в магнитное поле.
- 55.По катушке протекает ток, создающий магнитное поле энергией 0,5 Дж. Магнитный поток через катушку 10 мВб. Найти силу тока.
- 56.Определите силу тока, проходящего по прямолинейному проводнику, перпендикулярному однородному магнитному полю, если на активную часть проводника длиной 20 см действует сила в 50 Н при магнитной индукции 10 Тл.
- 57. Электрон со скоростью $5 \cdot 10^7$ м/с влетает в однородное магнитное поле с индукцией 0.8 Тл под углом 30^0 к линиям индукции. Найти силу, действующую на электрон.
- 58.В катушке с индуктивностью 0,6 Гн сила тока 20 А. Какова энергия магнитного поля катушки? 59.Определите по условию задачи №2 радиус окружности, по которой движется электрон, период

- обращения, импульс электрона, его кинетическую энергию, а также ускоряющую разность потенциалов, которую прошел электрон, прежде чем попал в магнитное поле.
- 60.Плоская прямоугольная катушка из 200 витков со сторонами 10 см и 5 см находится в однородном магнитном поле с индукцией 50 мТл. Какой максимальный вращающий момент может действовать на катушку в этом поле, если сила тока в ней 2 А?
- 61.Определить направление индукционного тока в катушке, если магнит удаляют от соленоида северным полюсом.
- 62.За 3 мс в соленоиде, содержащем 200 витков провода, магнитный поток равномерно убывает с 8 до 5 мВб.

Найдите ЭДС индукции в соленоиде.

- 63. Найдите скорость изменения магнитного потока в соленоиде, состоящем из 1000 витков, при возбуждении в нем ЭДС индукции 220 В.
- 64.Найдите ЭДС индукции в проводнике с длиной активной части 25 см, перемещаемой в однородном магнитном поле с индукцией 5 мТл со скоростью 5 м/с под углом 30^0 к вектору магнитной индукции.
- 65. Почему для переноски горячего проката не применяют подъемный магнитный кран?
- 66.Определить направление индукционного тока в катушке, если магнит приближают к соленоиду южным полюсом.
- 67.3а 7 мс в соленоиде, содержащем 100 витков провода, магнитный поток равномерно убывает с 14 до 7 мВб.

Найдите ЭДС индукции в соленоиде.

- 68. Найдите скорость изменения магнитного потока в соленоиде, состоящем из 500 витков, при возбуждении в нем ЭДС индукции 320 В.
- 69. Найдите ЭДС индукции в проводнике с длиной активной части 50 см, перемещаемой в однородном магнитном поле с индукцией 2 мТл со скоростью $10 \, \text{м/c}$ под углом $30^0 \, \text{к}$ вектору магнитной индукции.
- 70. Усилится ли магнитное поле катушки с током, если в нее внести стальной сердечник?
- 71.По катушке индуктивности с ничтожно малым активным сопротивлением в цепи с частотой 50 Гц и напряжением 125 В идет ток силой 2,5 А. Какова индуктивность катушки?
- 72.В колебательном контуре зависимость силы тока от времени описывается уравнением $i=0.06sin10^6\pi t$. Определить частоту электромагнитных колебаний и индуктивность катушки, если максимальная энергия магнитного поля $1.8\cdot10^{-4}$ Дж.
- 73. Ток в колебательном контуре изменяется со временем по закону i=0,01cos000t. Найти индуктивность контура, зная, что емкость его конденсатора $2\cdot10^{-5}$ Ф.
- 74. На какую длину волны настроен колебательный контур, состоящий из катушки с индуктивно-

- стью 2 м Γ н и плоского конденсатора? Пространство между пластинами конденсатора заполнено веществом с диэлектрической проницаемостью 11. Площадь пластин конденсатора 800 см 2 , расстояние между ними 1 см.
- 75. При изменении емкости конденсатора колебательного контура на 0,72 мкф период колебаний изменился в 14,1 раз. Найти первоначальную емкость C_1 . Индуктивность катушки осталась неизменной.
- 76.Определить емкость конденсатора, сопротивление которого в цепи переменного тока частотой 50 Гц равно 103 Ом.
- 77. Напряжение на обкладках конденсатора в колебательном контуре изменяется по закону $U=50cos10^4\pi t$. Емкость конденсатора 0,9 мкФ. Найти индуктивность контура, закон изменения со временем силы тока в цепи, а также длину волны, соответствующую этому контуру.
- 78. Какое количество теплоты выделится в 1 мин в электрической плитке с активным сопротивлением 30 Ом, если плитка включена в сеть переменного тока, напряжение которого, измеренное в вольтах, изменяется со временем по закону $u=180 sin\omega t$?
- 79.Определить период переменного тока, для которого конденсатор емкостью 2 мкФ представляет сопротивление 8 Ом.
- 80.По катушке индуктивности с ничтожно малым активным сопротивлением в цепи с частотой 50 Гц и напряжением 125 В идет ток силой 2,5 А. Какова индуктивность катушки?
- 81. Волна распространяется по поверхности воды в озере со скоростью 6 м/с. Найти период и частоту колебаний бакена, если длина волны 3 м.
- 82. Возникает ли эхо в степи? Почему?
- 83. Какой электроемкостью обладает колебательный контур, если он настроен в резонанс с радиостанцией, работающей на радиоволне 400 м. В колебательный контур радиоприемника входит катушка индуктивностью 0,5 Гн.
- 84.Импульсный режим работы радара создает частоту повторения импульсов равную 2000 Гц. Продолжительность одного импульса составляет 0, 9 мкс. Определить наибольшую и наименьшую удаленность объекта, который обнаруживает этот радар.
- 85.Вычислить плотность потока электромагнитного излучения, если плотность энергии волны этого излучения $0,6\cdot10\cdot10$ Дж/м3.
- 86.Определить скорость распространения волн по поверхности воды, если известно, что за 10 с поплавок рыбака совершил на волнах 20 колебаний, а расстояние между соседними гребнями волн равно 1,2 м.
- 87. Многократное эхо можно услышать в горах. Почему?
- 88. Радиоприемник настроен в резонанс с электромагнитными колебаниями длина волны, которых равна 300 м. Найти емкость конденсатора колебательного контура, если индуктивность катушки

- 50 мкГн.
- 89. Работающий в импульсном режиме радиолокатор излучает импульсы частотой 1500 Гц. Длительность отдельного импульса составляет 0,7 мкс. Определите наибольшее и наименьшее расстояние, на котором радиолокатор обнаружит цель.
- 90. Определите плотность энергии электромагнитной волны, известно , что плотность потока излучения равна 7 мBt/m2
- 91. Работа выхода электронов из золота равна 4,76 эВ. Найдите красную границу фотоэффекта для золота.
- 92. Работа выхода электронов из кадмия равна 4 эВ. Какова частота света, если скорость электронов равна $7.2 * 10^5$ м/с?
- 93.Максимальная энергия фотоэлектронов, вылетающих из рубидия при его освещении лучами с длиной волны 317 нм, равна $2,84*10^{-19}$ Дж. Определить работу выхода и красную границу фотоэффекта для рубидия.
- 94. пределить энергию, массу и импульс фотона с длиной волны 200 нм.
- 95.Пластина никеля, для которого работа выхода электрона равна $8 * 10^{-19}$ Дж, освещена ультрафиолетовым светом с длиной волны $2 * 10^{-7}$ м. Определить максимальную скорость фотоэлектронов.
- 96. Работа выхода электронов из кадмия равна 4,08 эВ. Найдите красную границу фотоэффекта для кадмия.
- 97. Работа выхода электронов из цезия равна 1,2 эВ. Какова частота света, если скорость электронов равна $5*10^5$ м/с?
- 98.Максимальная энергия фотоэлектронов, вылетающих из натрия при его освещении лучами с длиной волны 200 нм, равна $4*10^{-19}$ Дж. Определить работу выхода и красную границу фотоэффекта для натрия.
- 99.Определить энергию, массу и импульс фотона с длиной волны 350 нм.
- 100.Пластина калия, для которого работа выхода электрона равна 2,84 * 10⁻¹⁹ Дж, освещена светом с длиной волны 450 нм. Определить максимальную скорость фотоэлектронов.

Критерии оценки (в баллах):

Максимальная оценка 100 баллов: 25 баллов за верный ответ на один вопрос и 50 баллов за решение задачи ($25 \times 2 + 50 = 100$).

Критерии оценки ответа на теоретический вопрос

- 21-25 баллов выставляется студенту, если ответ был полным с незначительным количеством неточностей;
- 19-22 баллов выставляется студенту, если в целом ответ был верным с незначительным количеством ошибок (до 15%);
- 15-18 баллов выставляется студенту, если ответ был со значительным количеством недостатков, но соответствует минимальным критериям;

- 0-14 баллов выставляется студенту, если ответ не был дан или не соответствует минимальным критериям.

Критерии оценки решения задачи

- 45-50 баллов выставляется студенту, если составлен правильный алгоритм решения задачи; в логическом рассуждении, в выборе формул и решении нет ошибок; получен верный ответ; задача решена рациональным способом;
- 38-44 баллов выставляется студенту, если составлен правильный алгоритм решения задачи; в логическом рассуждении и решении нет существенных ошибок; правильно сделан выбор формул для решения; есть объяснение решения, но задача решена нерациональным способом или допущено не более двух несущественных ошибок, получен верный ответ;
- 30-37 баллов выставляется студенту, если задание понято правильно; в логическом рассуждении нет существенных ошибок, но допущены существенные ошибки в выборе формул или в математических расчетах; задача решена не полностью или в общем виде;
- 0-29 баллов выставляется студенту, если задача не решена или решена неправильно.

Блок Г ОЦЕНИВАНИЕ

Перечень вопросов к экзамену

- 1. Механическое движение. Система отсчета. Траектория, путь, перемещение.
- 2. Кинематика поступательного движения. Скорость и ускорение.
- 3. Частные случаи поступательного движения.
- 4. Основные уравнения кинематики поступательного движения.
- 5. Кинематика вращательного движения.
- 6. Тангенциальная и нормальная составляющая ускорения.
- 7. Угол поворота, угловая скорость, угловое ускорение.
- 8. Связь между линейными и угловыми величинами.
- 9. Частные случаи вращательного движения.
- 10. Основные уравнения кинематики вращательного движения.
- 11. Динамика поступательного движения. Масса, импульс, сила.
- 12. Первый закон Ньютона. Инерциальные системы отчета.
- 13. Второй закон Ньютона. Вес тела. Силы трения, упругости, тяжести.
- 14. Принцип относительности Галилея. Третий закон Ньютона.
- 15. Закон всемирного тяготения.
- 16. Работа, работа переменной силы.
- 17. Кинетическая и потенциальная энергии.
- 18. Механическая мощность.
- 19. Динамика вращательного движения.
- 20. Момент силы, условие равновесия тела, имеющего ось вращения.

- 21. Момент инерции твердого тела.
- 22. Способы определения момента инерции, теорема Штейнера.
- 23. Основное уравнение динамики вращательного движения. Момент импульса.
- 24. Работа момента силы. Кинетическая энергия вращающегося тела.
- 25. Силы внутренние и внешние. Замкнутые системы.
- 26. Закон сохранения импульса и момента импульса замкнутой системы.
- 27. Консервативные системы. Закон сохранения полной механической энергии.
- 28. Механические колебания. Уравнения гармонических колебаний.
- 29. Математический маятник. Пружинный маятник. Период колебаний маятника.
- 30. Вынужденные колебания. Резонанс. Затухающие колебания.
- 31. Волны. Длина волны. Уравнение бегущей волны.
- 32. Гидростатическое и гидродинамическое давление. Закон Паскаля.
- 33. Течение идеальной жидкости. Уравнение неразрывности струи.
- 34. Уравнение Бернулли.
- 35. Течение вязкой жидкости. Ламинарное и турбулентное течение.
- 36. Закон Пуазейля. Уравнение Ньютона.
- 37. Основные положения молекулярно-кинетической теории.
- 38. Модели газа для решения задач МКТ и термодинамики.
- 39. Основное уравнение МКТ.
- 40. Молекулярно-кинетическое толкование температуры.
- 41. Изопроцессы в газах. Закон Дальтона.
- 42. Явление переноса: диффузия, вязкость, теплопроводность.
- 43. Энергия, теплота, работа в термодинамике.
- 44. Внутренняя энергия. Виды теплообмена.
- 45. Молекулярно-кинетическая теория теплоемкости: распределение энергии по степеням свободы.
- 46. І начало термодинамики.
- 47. Работа газа в изопроцессах.
- 48. Адиабатический процесс.
- 49. Термодинамическая вероятность и энтропия.
- 50. Изменение энтропии.
- 51. ІІ начало термодинамики.

- 52. Тепловые машины. Цикл Карно.
- 53. Электрический заряд. Свойства заряда.
- 54. Закон Кулона. Принцип суперпозиции сил.
- 55. Электростатическое поле. Напряженность электростатического поля.
- 56. Силовые линии электростатического поля. Принцип суперпозиции по-

лей.

- 57. Поток вектора напряженности электростатического поля. Теорема Гаусса.
- 58. Проводники в электростатическом поле.
- 59. Сверхпроводимость.
- 60. Диэлектрики в электростатическом поле.
- 61. Диэлектрическая проницаемость.
- 62. Потенциальная энергия.
- 63. Потенциал электростатического поля. Принцип суперпозиции потенциалов.
- 64. Конденсаторы. Соединение конденсаторов. Энергия конденсатора.
- 65. Электрический ток. Сила тока. Плотность тока.
- 66. Законы Ома для участка цепи и полной цепи. ЭДС.
- 67. Закон Джоуля-Ленца.
- 68. Параллельное и последовательное соединение проводников.
- 69. Разветвленная электрическая цепь. Правила Кирхгофа.
- 70. Электрический ток в жидкостях. Закон Фарадея.
- 71. Электрический ток в газах. Плазма и ее свойства.
- 72. Электрический ток в вакууме.
- 73. Магнитное поле.
- 74. Магнитная индукция. Линии магнитной индукции.
- 75. Закон Био-Савара-Лапласа.
- 76. Магнитные поля простейших конфигураций токов.
- 77. Закон Ампера. Взаимодействие проводников с током.
- 78. Сила Лоренца. Движение заряженной частицы в магнитном поле.
- 79. Магнитные свойства веществ. Магнитная проницаемость.
- 80. Диа-, пара-, ферромагнетики.
- 81. Магнитный поток. Теорема Гаусса для магнитного поля.
- 82. ЭДС индукции. Закон Фарадея. Правило Ленца.
- 83. Самоиндукция. Индуктивность. Энергия магнитного поля.
- 84. Электромагнитные колебания.

- 85. Колебательный контур. Период собственных колебаний контура.
- 86. Вынужденные электрические колебания.
- 87. Переменный ток. Мощность в цепи переменного тока.
- 88. Индуктивное, емкостное и полное сопротивление цепи переменного то-

ка.

- 89. Электромагнитные волны. Свойства электромагнитных волн.
- 90. Шкала электромагнитных волн.
- 91. Интерференция света. Полосы равного наклона и равной толщины.

Кольца Ньютона.

- 92. Дифракция света. Зоны Френеля. Дифракция Френеля.
- 93. Дифракция в параллельных лучах Дифракционная решетка.
- 94. Поляризация света. Анализатор. Закон Малюса.
- 95. Методы получения поляризованного света. Дихроизм. Вращение плоскости поляризации.
- 96. Тепловое излучение. Законы излучения абсолютно черного тела.
- 97. Корпускулярно-волновой дуализм. Энергия кванта света.
- 98. Фотоэффект. Уравнение Эйнштейна для фотоэффекта.
- 99. Давление света.
- 100. Волновые свойства частиц. Физический смысл волн де-Бройля.
- 101. Соотношение неопределенности.
- 102. Понятие о волновой функции. Физический смысл уравнения Шреденгера.
- 103. Модели атома. Постулаты Бора.
- 104. Атомные излучения.
- 105. Понятие о квантовых числах. Принцип Паули.
- 106. Основные свойства и строение атомных ядер.
- 107. Устойчивость ядер. Энергия связи.
- 108. Радиоактивность. Закон радиоактивного распада.
- 109. Классификация взаимодействий в ядерной физике.

Перечень задач к экзамену

1. С какой скоростью и каким курсом должен лететь самолет, чтобы за 1.5 часа он мог пролететь по направлению точно на север 600 км, есливо время полета с запада дует ветер перпендикулярно к меридиану со скоростью 72 км/ч? Ответ дать во внесистемных единицах и в

СИ. К задаче сделать рисунок с соблюдением масштаба.

- **2.** Первую половину пути автомобиль двигался со скоростью 54 км/ч, а вторую половину пути со скоростью 72 км/ч. Найти среднюю ско рость автомобиля. Ответ дать во внесистемных единицах и в СИ.
- 3. Материальная точка движется прямолинейно. Уравнение движения $S = A + Bt + Ct^2 + Dt^3$ (S в метрах, t в секундах). Каковы скорость и ускорение точки в моменты времени $t_1 = 0$, $t_2 = 10$ с ? Каковы средние величины скорости и ускорения за первые 10 секунд движения, если для Вашего варианта A = 2 м, B = 3 м/с, C = 0, D = 0.01 м/с 3 ?
- **4.** Диск вращается согласно уравнению $\Box = a + bt + ct^2 + dt^3$, где $\Box \Box$ угол поворота радиуса в радианах, t время в секундах. Определить угловую скорость и ускорение в моменты времени $t_1 = 11$ с и $t_2 = 15$ с. Ка-ковы средние значения угловой скорости и углового ускорения в промежутке времени от $t_1 = 11$ до $t_2 = 15$ с включительно, если для Вашего варианта a = 1, b = 2 с c = 0.1 c = 0.1 c = 0.01 c = 0.01
- **5.** Используя данные предыдущей задачи, определить: 1) частоту вращения диска в момент времени t₂ в об/с и об/мин; 2) в момент времени t₂ определить скорость, нормальное, тангенциальное и полное ускорение точек, находящихся на расстоянии 10 см от оси вращения.
- 6. К пружинным весам подвешен блок. Через блок перекинули тонкий шнур, к концам которого привязали грузы 1 кг и 1.5 кг. Определить ускорение, с которым будут двигаться грузы. Что покажут пружинные весы во время движения грузов? Массой блока и шнура пренебречь.
- 7. Шкив делал 10 об/с. Под действием постоянного тормозящего момента сил, равного 100 H⁻м, он остановится через 1 минуту. Определить момент инерции шкива.
- 8. Под действием постоянной силы $F = 20 \, \mathrm{H}\,$ тело переместилось вдоль прямой на расстояние $20 \, \mathrm{m}.$ Определить работу силы F, если угол меж ду направлением силы и направлением перемещения равен $20 \, \mathrm{o}.$
- 9. Под действием переменной силы F тело переместилось вдоль прямой на расстояние 20
 м. Во время движения проекция F силы на направление перемещения изменялась равномерно от

0 до 20 Н. Найти работу переменной силы F.

10.Под действием постоянного момента сил 20 Н м тело начало вращаться. Определить работу момента сил за 1 мин от начала движения, если момент инерции тела 200 кг м², а направление момента сил совпадает с направлением угловой скорости.

11.К потолку трамвайного вагона подвешен на нити шар. Вагон тормозится и и его скорость равномерно изменяется за промежуток времени 3c от18 км/ч до 3.6 км/ч на какой угол от вертикали отклонится при этом нить.

12. Охотник стреляет из ружья вдоль лодки под углом в 300 к горизонту Какую скорость имел при вылете заряд массой 50 г, если лодка приобрела скорость 10 см/с. Масса лодки и охотника со снаряжением 180 кг.

13. Горизонтальная платформа, имеющая форму диска, вращается вокруг вертикальной оси, делая 10 об/мин. На краю платформы стоит человек, масса которого 60 кг. Определить частоту вращения, если человек перейдет в центр платформы. Масса платформы 250 кг, ее радиус 3.5 м. Человека считать точечной массой.

14. Обруч массой 2 кг катится без скольжения по горизонтальной плоскости. Скорость его центра инерции 2 м/с. На какую высоту он поднимется по наклонной плоскости ?

15. Искусственный спутник движется вокруг Земли по окружности. Высота спутника над поверхностью Земли 3200 км. Определить скорость спутника. Радиус Земли принять равным 6400 км.

16.С каким ускорением будет двигаться тело на половине расстояния между Землей и Луной. Воздействие других небесных тел на исследуемое тело пренебречь.

17.Найти работу сил гравитационного поля по перемещению тела в поле Земли с высоты 10000 км до поверхности Земли. Масса тела 10 т.

18. Написать уравнение гармонического колебательного движения с амплитудой 5 см, если в 1 мин совершается 150 колебаний и начальная фаза равна 450. Вывести для этого случая зависимость скорости и ускорения от времени.

- 19. Медный шарик, подвешенный на конце пружины, колеблется в вертикальном направлении. Как изменится частота его колебаний, если вместо медного шарика подвесить алюминиевый такого же диаметра?
- **20.** Начальная амплитуда (Ao = 3 см) затухающего колебания материальной точки за 4 мин уменьшилась до 1,2 см. Через какой промежуток времени она будет равна 0,8 см?
- **21.** Найти разность фаз между двумя точками звуковой волны в воздухе. Отстоящими друг от друга на расстоянии 30 см, если частота колебаний 100 Гц, а температура воздуха 0оС.
- **22.** Молекулы газа летят с одинаковой скоростью 400 м/c перпендикулярно к стенке. Концентрация молекул 10^{20} м^{-3} . Определить давление потока молекул на стенку, если удар молекул о стенку абсолютно упругий. Газ неон. Вывести расчетную формулу и сделать расчет.
- 23. Сколько молекул газа находится в 2 л при температуре 27оС и давлении 5 Па?
- **24.**Водород в объеме $V_1 = 5$ л, находившийся под давлением P = 1 атм, адиабатически сжат до объема $V_2 = 1$ л. Найти работу сжатия.
- **25.**Используя данные предыдущей задачи , найти изменение внутренней энергии газа и теплоту, сообщенную газу.
- **26.**Два точечных заряда $q_1 = 1.6 \cdot 10^{-15}$ Кл и $q_2 = 1.6 \cdot 10$ -15 Кл находятся на расстоянии r = 15 см друг от друга и помещены в среду с диэлектрической проницаемостью $\square = 2$. На расстоянии 20 см от каждого заряда находится третий заряд $q_3 = -1.6 \cdot 10^{-15}$ Кл. Найти силу, действующую на третий заряд.
- **27.**Используя данные предыдущей задачи, определить напряженность и потенциал поля, создаваемого зарядами q₁ и q₂, в точке, которая находится на расстоянии 50 см от каждого заряда.
- **28.** Найти напряженность поля в точке, в которой на заряд $5^{\circ}10^{\circ}$ Кл действует сила $3^{\circ}10^{\circ}$ Н. Найти заряд, создающий поле, если рассматриваемая точка удалена от него на 10 см.
- **29.**Используя данные и результаты расчетов предыдущей задачи, найти потенциал электростатического поля в точке, удаленной от зарядов q₁ и q₂ на расстояние 20 см.

- 30.Имеется плоский конденсатор, разность потенциалов между пластинами которого ∆□□, а расстояние между ними d. Диэлектриком между обкладками конденсатора служит вакуум. От пластин конденсатора по одной силовой линии одновременно начали двигаться протон и электрон. На каком расстоянии от отрицательной пластины они встретятся? Масса протона в 1840 раз больше массы электрона, заряды электрона и протона по абсолютной величине равны.
- **31.** В проводнике сопротивлением 2 Ом , подключенном к элементу с ЭДС=1,1 В, идет ток 0,5 А. Какова сила тока при коротком замыкании элемента?
- 32. По проводнику сопротивлением 3 Ом течет равномерно возрастающий ток. Количество теплоты, выделившееся в проводнике за 1 мин, равно 2000 Дж. Определить заряд, прошедший через проводник за это время, если в момент времени, принятый за начальный, ток в проводнике был равен нулю.
- **33.** В однородное магнитное поле напряженностью 1000 А/м помещен прямой проводник длиной 20 см. Определить силу, действующую на проводник, если по нему течет ток 50 A, а угол между направлением тока и вектором напряженности 30⁰. К решению задачи приложить рисунок, на котором указать направление силы.
- **35.** Электрон влетает в однородное магнитное поле напряженностью 1200 А/м. Определить период его вращения в магнитном поле. К задаче приложить рисунок.
- **36.** Плоский контур с током, представляющий собой прямоугольник со сторонами 10 и 20 см помещен в однородное магнитное поле, индукция которого $7^{\circ}10^{\circ}$ Тл. По контуру течет ток 5 А. Найти момент сил, действующий на контур с током, если его плоскость составляет угол 100° с линиями поля. К задаче представить рисунок.
- **37.** Используя условие предыдущей задачи, определить, какую работу нужно совершить, чтобы угол между плоскостью контура и линиями поля составил 120°?
- **38.** Какая мощность необходима для того, чтобы проводник длиной 40 см перемещать со скоростью 5 м/с перпендикулярно магнитному полю напряженностью 100 А/м, если по проводнику идет ток 20 А.
- 39. В однородном магнитном поле, индукция которого 0.15 Тл, вращается прямоугольная рамка

размерами 200 мм \square 400 мм. Рамка содержит 850 витков. Найти зависимость ЭДС индукции от времени, если период вращения рамки составляет 0,02 с. Чему равно максимальное значение ЭДС индукции.

40.В цепь переменного тока напряжением 220 В и частотой 50 Гц включены последовательно емкость 35,4 мкФ, активное сопротивление 100 Ом и индуктивность 0,7 Гн. Найти силу тока и мощность в цепи, падение напряжения на емкости, омическом сопротивлении и индуктивности.

41.Во сколько раз увеличится масса протона при ускорении его от начальной скорости, равной нулю, до скорости равной 0.85 скорости света.

42. Луч света падает на плоскую границу раздела двух сред, частично отражается и частично преломляется. Определите угол падения, при котором отраженный луч перпендикулярен преломленному лучу.

43.Два когерентных источника испускают монохроматический свет с длиной волны 0,6 мкм. Определить на каком расстоянии от точки, расположенной на равном расстоянии от источников, будет первый максимум освещенности. Экран удален от источников на 3 м, расстояние между источниками 0,5 мм.

44.Предмет находится на расстоянии 20 см от собирающей линзы с фокусным расстоянием 15 см. Найдите расстояние от изображения до линзы.

45.Дифракционная решетка шириной 4 см имеет 2000 штрихов и освещается нормально падающим не монохроматическим светом. На экране, удаленном на расстояние 50 см, максимум второго порядка удален от центрального на 3,35 см. Найти длину волны света.

Комплект оценочных материалов

ОПК-1. Способен решать типовые задачи профессиональной деятельности на основе знаний основных законов математических и естественных наук с применением информационно - коммуникационных технологий

ОПК-1.1. Использует основные законы математических дисциплин для решения типовых задач профессиональной деятельности

3000	ич профессиональной деятельности Б1.О.12. ФИЗИКА
	Задания закрытого типа
1	Кинетическая энергия вала, вращающегося с частотой n = 5 об/c, Wк =60 Дж. Найти момент импульса L вала. 1) 5.82 кг м 2 /c 2) 3.82 кг м 2 /c 3) 3.99 кг м 2 /c 4) 5.99 кг м 2 /c Правильный ответ:2
2	В сосуде объемом V = 4 л находится масса m = 1 г водорода. Какое число молекул n содержит единица объема сосуда? 1) 7.5 10 25 м -3 2) 12.5 10 25 м -3 3) 19.55 10 25 м -3 3) 24.55 10 25 м -3 Правильный ответ: 1
3	Явление теплопроводности имеет место при наличии градиента: 1) температуры 2) концентрации 3) скорости слоев жидкости или газа 4) электрического заряда Правильный ответ: 1
4	Относительно статических электрических полей справедливо: 1) циркуляция вектора напряженности вдоль произвольного, замкнутого контура равна нулю 2) силовые линии электростатического поля замкнуты 3) электростатическое поле действует на заряженную частицу с силой, не зависящей от скорости движения частицы Правильный ответ: 1 и 3.
5	Относительно магнитных статических полей справедливы утверждения: 1) статические магнитные поля являются потенциальными 2) магнитное поле действует только на движущиеся заряды 3) силовые линии магнитного поля замкнуты Правильный ответ: 2 и 3
	Задания открытого типа
6	Твердое тело вращается вокруг неподвижной оси согласно уравнению. Величина угловой скорости в момент времени равна Правильный ответ: 2 рад/с
7	Если тело движется по окружности по часовой стрелке с возрастающей по величине линейной скоростью, то вектор ускорения тела в точке А имеет направление
	Правильный ответ: 2

	Если для растяжения недеформированной пружины на требуется сила, равная F= 30 H,
8	то для сжатия этой же пружины на надо совершить работу,
O	равную
	Правильный ответ: 60 Дж
	Если момент инерции тела увеличить в 2 раза, а скорость его вращения умень-
9	шить в 4 раза, то момент импульса тела
	Правильный ответ: уменьшится в 2 раза
	При нагревании идеального газа в закрытом сосуде средняя кинетическая энергия
10	поступательного движения его молекул увеличилась в 2 раза.
	При этом давление газа
	Правильный ответ: увеличится в 2 раза
	При увеличении температуры идеального газа в 3 раза средняя квадратичная ско-
11	рость молекул
	Правильный ответ: увеличится в раз
	В двух одинаковых сосудах при равных давлениях находятся водород и гелий. Во
12	сколько раз внутренняя энергия водорода больше внутренней энергии ге-
	лия? Правильный ответ: в раза
	В некотором процессе газ совершает работу, равную 5МДж, а его внутренняя энергия
	уменьшилась на 2 МДж. Какое количество теплоты передано газу в этом процессе?
13	уменьшилаев на 2 мідж. Какое количество тенлоты передано газу в этом процессе:
	Правильный ответ: 3 МДж
1.1	Явление теплопроводности имеет место при наличии градиента
14	Правильный ответ: температуры
	Точечный заряд $+q$ находится в центре сферической поверхности. Если добавить заряд
15	-q внутрь сферы, то поток вектора напряженности электростатического поля через по-
13	верхность сферы
	Правильный ответ: уменьшится
	На рисунке изображено сечение двух параллельных длинных прямолинейных
16	проводника с противоположно направленными токами . Индукция магнитного
16	поля равна нулю в некоторой точке участка
	Правильный ответ: а
	Правильный ответ: а Лля сегнетоэлектрика справедливы утверждения:
	Для сегнетоэлектрика справедливы утверждения:
	Для сегнетоэлектрика справедливы утверждения: 1) в определенном температурном интервале имеет место самопроизвольная поляри-
17	Для сегнетоэлектрика справедливы утверждения:
17	Для сегнетоэлектрика справедливы утверждения: 1) в определенном температурном интервале имеет место самопроизвольная поляризация в отсутствие внешнего электрического поля
17	Для сегнетоэлектрика справедливы утверждения: 1) в определенном температурном интервале имеет место самопроизвольная поляризация в отсутствие внешнего электрического поля 2) диэлектрическая проницаемость зависит от напряженности поля 3) в отсутствии внешнего электрического поля дипольные электрические моменты доменов равны нулю
17	Для сегнетоэлектрика справедливы утверждения: 1) в определенном температурном интервале имеет место самопроизвольная поляризация в отсутствие внешнего электрического поля 2) диэлектрическая проницаемость зависит от напряженности поля 3) в отсутствии внешнего электрического поля дипольные электрические моменты доменов равны нулю Правильный ответ: 1 и 2
	Для сегнетоэлектрика справедливы утверждения: 1) в определенном температурном интервале имеет место самопроизвольная поляризация в отсутствие внешнего электрического поля 2) диэлектрическая проницаемость зависит от напряженности поля 3) в отсутствии внешнего электрического поля дипольные электрические моменты доменов равны нулю Правильный ответ: 1 и 2 Уравнение плоской синусоидальной волны, распространяющейся вдоль оси ОХ, име-
17	Для сегнетоэлектрика справедливы утверждения: 1) в определенном температурном интервале имеет место самопроизвольная поляризация в отсутствие внешнего электрического поля 2) диэлектрическая проницаемость зависит от напряженности поля 3) в отсутствии внешнего электрического поля дипольные электрические моменты доменов равны нулю Правильный ответ: 1 и 2 Уравнение плоской синусоидальной волны, распространяющейся вдоль оси ОХ, имеет вид ξ=0,01sin(). Длина волны (в м) равна
	Для сегнетоэлектрика справедливы утверждения: 1) в определенном температурном интервале имеет место самопроизвольная поляризация в отсутствие внешнего электрического поля 2) диэлектрическая проницаемость зависит от напряженности поля 3) в отсутствии внешнего электрического поля дипольные электрические моменты доменов равны нулю Правильный ответ: 1 и 2 Уравнение плоской синусоидальной волны, распространяющейся вдоль оси ОХ, имеет вид ξ=0,01sin(). Длина волны (в м) равна Правильный ответ: 3,14
	Для сегнетоэлектрика справедливы утверждения: 1) в определенном температурном интервале имеет место самопроизвольная поляризация в отсутствие внешнего электрического поля 2) диэлектрическая проницаемость зависит от напряженности поля 3) в отсутствии внешнего электрического поля дипольные электрические моменты доменов равны нулю Правильный ответ: 1 и 2 Уравнение плоской синусоидальной волны, распространяющейся вдоль оси ОХ, имеет вид \$=0,01sin(). Длина волны (в м) равна Правильный ответ: 3,14 На пути естественного свата помещены две пластинки турмалина. После прохож-
18	Для сегнетоэлектрика справедливы утверждения: 1) в определенном температурном интервале имеет место самопроизвольная поляризация в отсутствие внешнего электрического поля 2) диэлектрическая проницаемость зависит от напряженности поля 3) в отсутствии внешнего электрического поля дипольные электрические моменты доменов равны нулю
	Для сегнетоэлектрика справедливы утверждения: 1) в определенном температурном интервале имеет место самопроизвольная поляризация в отсутствие внешнего электрического поля 2) диэлектрическая проницаемость зависит от напряженности поля 3) в отсутствии внешнего электрического поля дипольные электрические моменты доменов равны нулю Правильный ответ: 1 и 2 Уравнение плоской синусоидальной волны, распространяющейся вдоль оси ОХ, имеет вид ξ =0,01sin(). Длина волны (в м) равна Правильный ответ: 3,14 На пути естественного свата помещены две пластинки турмалина. После прохождения пластинки 1 свет полностью поляризован. Если и - интенсивности света, прошедшего пластинки 1 и 2 соответственно, и =, тогда угол между направления-
18	Для сегнетоэлектрика справедливы утверждения: 1) в определенном температурном интервале имеет место самопроизвольная поляризация в отсутствие внешнего электрического поля 2) диэлектрическая проницаемость зависит от напряженности поля 3) в отсутствии внешнего электрического поля дипольные электрические моменты доменов равны нулю

Лист визирования фонда оценочных средств на очередной учебный год

Фонд оценочных средств по дисциплине «Физика» проанализирован и признан актуальным для использования на 20 20 учебный год.
Протокол заседания кафедры математики, физики и информационных технологий, от «» 20 г. N_2
Заведующий кафедрой математики, физики и информационных технологий
<u>«»20</u> г.
Фонд оценочных средств по дисциплине «Биофизика» проанализирован и признан актуальным для использования на 20 20 учебный год.
Протокол заседания кафедры математики, физики и информационных технологий, от «» 20 г. №
Заведующий кафедрой математики, физики и информационных технологий